
Quantum dynamics of a mechanical resonator

coupled to a qubit

Manoj Das

National Institute Technology Patna, Ashok Rajhpath, Patna,

Bihar 800005, India

December 16, 2023

Abstract

We have studied the quantum dynamics of a mechanical resonator

coupled to a qubit. The resonator is a part of an optical cavity and

is driven by external laser. The quantum Langevin operator has been

derived for the Quadrature operator as well as for the �uctuation op-

erators. We have tried to diagonalize the drift matrix to calculate the

position spectrum of the resonator.

1 Introduction

Optomechanical systems can be used to study the dynamics of a mechanical
resonator. The dynamics can be in�uenced by the presence of qubit cou-
pled to the resonator. There are many examples of literature[1], where the
dynamical behaviour of a resonator in hybrid optomechanical systems has
been studied. In the reference[2], we see an investigation for the generation
of entanglement between Bose-Einstein condensate(BEC) and the mirror of
a hybrid optomechanical system via the cavity optical �eld. Ref.[3] gave a
scheme for entangling an optical Fabry-Perot cavity and a nanomechanical
resonator beam (NRB) to a high degree by means of quantum dot. We have
tried to study here the dynamics of the resonator motion coupled to a qubit
in a hybrid optomechanical system. The optomechanical coupling is due to
radiation pressure of the optical �eld on the resonator, which couples the
cavity photon number with the position of the resonator (∝ x̂n̂ ), where
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x = xzf (b+ b†) represent the resonator position. xzf =
√

ℏ
2mω

(m is the mass

and ω is the oscillation frequency of the resonator) is the zero point oscil-
lation of the resonator,b̂ is the phonon annihilation operator.n̂ = a†a is the
cavity photon number operator,â is the cavity �eld operator.Here We place a
nanomechanical resonator(NMR)(with a quantum dot embedded on it) in an
optical cavity and drive the cavity with a strong laser of frequency ωl .The
NMR motion is coupled with the cavity �eld due to the reason said above.
The quantum dot which is taken as a two level system is also coupled with
the cavity �eld.The quantum dot is coupled through strain mediation to the
motion of the resonator. This is a hybrid optomechanical system because of

Figure 1: Nano mechanical resonator(NMR)within an optical cavity.A Quantum

dot is embedded within the cavity.A laser of frequency ωl is applied to drive the

cavity �eld

the presence of the three di�erent degrees of freedom namely the optical �eld,
the mechanical motion and the Quantum dot which is taken as a two level
system. In this case the doubly clamped nanomechanical resonator is acting
as an end mirror of this optomechanical system and the optomechanical cou-
pling is due to the change in momentum of the photons after re�ection from
the end mirror.
Similar type of system has been used to entangle a cavity optical �eld to
a mechanical resonator by using a quantum dot[1] All the coupling can be
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described clearly if we write the Hamiltonian of the system which is to be,

H = ℏωca
†a+ ℏΩm

2
(P 2 +Q2) + 1

2
ℏω0σz + ℏλσz(b+ b†) +

√
2ℏg0a†aQ+

ℏgc(σ+a+ σ−a
†) + iℏϵ(a†e−iωlt + aeiωlt)

(1)
Where ωc is the cavity resonance frequency,Ωm is the mechanical oscilla-

tion frequency and ω0 is the quantum dot transition frequency, a and a† are
cavity �eld annihilation and creation operator.P = b−b†

i
√
2
, Q = b+b†√

2
are the di-

mensionless momentum and position operator for the mechanical oscillator,
b, b† phonon annihilation and creation operator.σ+ and σ− are the raising
and lowering operator for the dot.σz is the population di�erence operator for
the dot.λ is the coupling constant between the resonator and the quantum
dot. ϵ is the driving strength. In a frame rotating with the laser frequency
ωl the Hamiltonian can be written as,

H = ℏωc
X2+Y 2

2
+ ℏωc

2
(P 2 +Q2) + ℏω0σz

2
+
√
2ℏλσzQ+ 1√

2
ℏg0(X2 + Y 2)Q+

ℏg(σ+
X+iY√

2
+ σ−

X−iY
i
√
2
) + 1√

(2)
ℏϵY

(2)

Where, X = a+a†√
2
, Y = a−a†

i
√
2
are amplitude and phase Quadrature of the light

�eld respectively.

2 Quantum Langevin Equations

The dynamics of a Quantum system coupled to its environment can be de-
scribed by the method used by Langevin[1],where it is assumed that due
to coupling the system dynamics is e�ected by the Bath whereas the bath
dynamics remains almost una�ected.Several methods were developed in the
1980's and 1990's to extend the approach to open quantum processes and dy-
namics[2,3,4,5] motivated by the experimental progress in the �eld of Quan-
tum optics. The quantum langevin equation for any system operator(Ô) is
given by,

Ô = 1
ih
[Ô, Ĥsys]− 1

ih̄
[Ô, q̂]F̂ (t) + m

2iℏ [[Ô, q̂],
∫ t

−∞ dt′γ(t− t′) ˙̂q(t′)]+ (3)

where the anti commutator is de�ned by, [A,B]+ = AB + BA. q̂ is the
position operator, F̂ (t) is the operator valued stochastic force with zero ex-
pectation value i.e. < F (t) >= 0, which is acting on the system by the
Bath.m is the mass of the system and γ represents the damping.
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Now within the �rst Markov approximation (γ(t) = γδ(t)) the Langevin
equation takes the form,

˙̂
O = 1

ih
[Ô, Ĥsys]− 1

ih̄
[Ô, q̂]F̂ (t)

+ m
2iℏ [[Ô, q̂], γ ˙̂q(t)]+

(4)

It is generally convenient to express the Markov Quantum langevin equation
in terms of dimensionless position operator, Q̂ = â+â†√

2
and the dimensionless

momentum �uctuations P̂in(t).

˙̂
O = 1

ih
[Ô, Ĥsys] + i

√
2γ[Ô, Q̂]P̂in(t)

+ 1
2iQ

[[Ô, Q̂],
˙̂
Q(t)]+

(5)

where Q = Ω/γ is the oscillator's quality factor. Generally in quantum optics
and quantum Optomechanics the bath coupling rate is much smaller than
other relevant rate in the system ,in this case it is convenient to perform
rotating wave approximation.Within the rotating wave approximation the
Quantum langevin equation becomes,

˙̂
O =

1

ih
[Ô, Ĥsys]− [Ô, a†](

γ

2
a−√

γain(t)) (6)

+(
γ

2
a† −√

γa†in(t))[Ô, a]

Here the Bath forcing term F (t) is replaced by the input noise operator,
ain(t) =

1
2π

∫∞
−∞ dωe−iω(t−t′)a−(ω). Where a−(ω) is the annihilation operator

for the Bath oscillator with resonance frequency ω at some initial time t− < t.
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3 Quantum langevin equation for the quadra-

ture operator

We have calculated the quantum langevin equation for the resonator quadra-
ture operators using equation (6). The quantum Langevin equations for the
Quadrature operators are,

Ẋ = ∆Y +
√
2g0QY + ϵ

√
2 +

1√
2
ige(σ+ − σ−)−

k

2
X +

√
kXin

Ẏ = −∆X −
√
2g0QX + ϵ

√
2− 1√

2
ge(σ+ + σ−)−

k

2
Y +

√
kYin

Q̇ = ΩmP

Ṗ = −ΩmQ− g0√
2
(X2 + Y 2)−

√
2λσz −

Γm

2
P +

√
ΓmPin

σ̇z = −2igc(σ+
X + iY√

2
− σ−

X − iY

i
√
2

)− Γp

2
(σz +

1

2
)

σ̇+ = i∆qσ+i2
√
2λQσ+ − igcσz

X − iY√
2

− Γp

2
σ+

σ̇− = −i∆qσ− − i2
√
2λQσ− + igcσz

X + iY√
2

− Γp

2
σ−

Where k is the cavity �eld decay rate,Γm is the mechanical damping rate,Γr

and Γp are the relaxation rate and dephasing rate of the quantum dot re-
spectively.

4 Quantum Langevin Equation For The Fluc-

tuating Operators

These equations are non linear coupled di�erential equations. To linearize
them we can work in the steady state conditions (the steady state condition
can be veri�ed by having negative real roots of the drift matrix A) where the
dynamics of the system can be described by the �uctuating operators which
are �uctuating around their steady state value. We write all the operators
used above as the sum of its steady state value and its �uctuations around
its classical steady state value as follows.
Q = Qs + δQ, P = Ps + δP,X = Xs + δX, Y = Ys + δY, σ+ = σs + δσ+, σ− =
σs + δσ−, σz = σz + δσz

Where Qs is the steady state value and δQ is the �uctuation. Similarly for
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the other operators.The Langevin equations for the �uctuating operators are,

δẊ = ∆1δY +
√
2g0YsδQ+

igc√
2
(δσ+ − δσ−)−

k

2
δX +

√
kδXin

δẎ = −∆1δX −
√
2g0XsδQ− gc√

2
(δσ+ + δσ−)−

k

2
δY +

√
kδYin

δQ̇ = ΩmδP

δṖ = −ΩmδQ−
√
2g0(XsδX + YsδY )−

√
2λδσz −

Γm

2
δP +

√
ΓmδPin

δσ̇z = −2igc[(σs − σ∗
s)
δX√
2
− i(σs + σ∗

s)
δY√
2
+ δσ+

(Xs + iYs)√
2

− δσ−
(Xs − iYs)√

2
]− Γm

2
δσz

δσ̇+ = i∆2δσ+i2
√
2λσsδQ− igc√

2
(σs

zδX − iσs
zδY + (Xs − iYs)δσz)−

Γp

2
δσ+

δσ̇− = −i∆2δσ−i2
√
2λσ∗

sδQ+
igc√
2
(σs

zδX + iσs
zδY + (Xs + iYs)δσz)−

Γp

2
δσ−

Where ∆1 = ∆+
√
2g0Qs, ∆2 = ∆q +2

√
2λQs are the modi�ed detuning

of the cavity �eld and the quantum dot relative to the laser light. Here Qs is
the steady state displacement of the NMR.These equations can be written in
compact form as,u̇ = Au(t) + B(t).Where u = [δX, δY, δQ, δP, σz, σ+, σ−]

T

and B)(t) is the noise vector given by,
B(t) = [

√
kδXin,

√
kδYin, 0,

√
ΓmδPin, 0, 0, 0]

T . And A is the drift matrix
given by,

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− k
2

∆1
√
2g0Ys 0 0 1√

2
igc

1√
2
igc

∆1 − k
2

−
√
2g0Xs 0 0 − 1√

2
gc − 1√

2
gc

0 0 Ωm 0 0 0 0

−
√
2g0Xs −

√
2g0Ys −Ωm −Γm

2
−
√
2λ 0 0

−
√
2igc(σs − σ∗

s ) −
√
2gc(σs + σ∗

s ) 0 0 −Γm
2

−igc
√
2(Xs + iYs) −igc

√
2(Xs − iYs)

− 1√
2
igcσ

s
z

1√
2
gcσ

s
z i2

√
2λσs 0 1√

2
igc(Xs − iYs) i∆2 − Γp

2
0

1√
2
igcσ

s
z

1√
2
gcσ

s
z −i2

√
2λσ∗

s 0 1√
2
igc(Xs + iYs) 0 −i∆2 − Γp

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7)

Where the input noise operators δXin, δYin are given by,

δXin = 1√
2
(δain + δa†in) and δYin = 1

i
√
2
(δain − δa†in)

with ⟨δain⟩ = ⟨δa†in⟩ = 0 and ⟨δain(t)δa†in(t′)⟩ = δ(t − t′), δ(t) is the dirac
delta function.
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The above equations are linear but still coupled di�erential equations. To
uncouple them we have to diagonalize the drift matrix A. From the diago-
nalised matrix we can easily get the value of δQ(t).
Now the position spectrum of the NMR for its �uctuating operator is given
by,

SδQδQ(ω) =

∫ ∞

−∞
⟨δQ(t)δQ(0)⟩eiωt (4.22)

Where ⟨δQ(t)δQ(0)⟩ is the position auto correlation function for the �uctu-
ation operator. Integrating SδQδQ(ω) with respect to ω will give the variance
in position i.e.

⟨δQ2⟩ = 1

2π

∫ ∞

−∞
SδQδQ(ω)dω (4.23)

Now this variance can be used to study its non classical properties,

⟨δQ2⟩
⟨δQ2

0⟩
< 1; corresponds to Squeezing

⟨δQ2⟩
⟨δQ2

0⟩
> 1 ; will lead to Ampli�cations.

Where δQ2
0 is the variance for the zero point oscillation of the resonator.

5 conclusion

We tried to study the dynamics of a mechanical resonator coupled to a quan-
tum dot within an optical cavity. We have derived the quantum Langevin
equation for the quadrature operator of the mechanical resonator and the
optical �eld. To linearize the derived equation we divided the quadrature
operators into the sum of �uctuation operator and its steady state value and
then calculated the langevin equation in �uctuation operators. Drift matrix
A is calculated which can be diagonalized to uncouple the equations. From
that we can calculate the position �uctuation δQ(t) of the resonator.
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